High-order adapter schemes for cell-centered finite difference method
نویسندگان
چکیده
منابع مشابه
High Order Compact Finite Difference Schemes for Solving Bratu-Type Equations
In the present study, high order compact finite difference methods is used to solve one-dimensional Bratu-type equations numerically. The convergence analysis of the methods is discussed and it is shown that the theoretical order of the method is consistent with its numerical rate of convergence. The maximum absolute errors in the solution at grid points are calculated and it is shown that the ...
متن کاملNonstandard finite difference schemes for differential equations
In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...
متن کاملHigh-order finite difference schemes for incompressible flows
This paper presents a new high order approach to the numerical solution of the incompressible Stokes and Navier-Stokes equations. The class of schemes developed is based upon a velocity-pressure-pressure gradient formulation which allows: (i) high order finite difference stencils to be applied on nonstaggered grids; (ii) high order pressure gradient approximations to be made using standard Padé...
متن کاملAdaptive High-Order Finite-Difference Method for Nonlinear Wave Problems
We discuss a scheme for the numerical solution of one-dimensional initial value problems exhibiting strongly localized solutions or finite-time singularities. To accurately and efficiently model such phenomena we present a full space-time adaptive scheme, based on a variable order spatial finite-difference scheme and a 4th order temporal integration with adaptively chosen time step. A wavelet a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational Physics
سال: 2020
ISSN: 0021-9991
DOI: 10.1016/j.jcp.2019.109090